
8. PARAMETER ESTIMATION USING DATA
FROM DIFFERENT SOURCES

8.1 The Hierarchical Model

This chaptercontains the most complex mathematics of
the handbook, although most of the formulas can be
skipped by those who use preprogrammed software.
The formulas are of interest primarily to those who
must write the programs. Comments throughout the
chapter state which sections can be skipped by most
readers.

In this chapter, data come from a number of similar. but
not identical, sources. For simplicity, the discussion is
in terms of data from a number of nuclear power plants.
However, the ideas can be applied much more widely.

The situation is described by a hierarchical model,
with two levels. The first level models the plants as a
family, with the members resembling each other. The
second level models the data that are generated at each
plant.

To be more specific, suppose that initiating events are
to be modeled, so the parameter of interest is A.
Level I of the model says that A varies among the m
plants, but only to a limited degree. Thus, the plants are
not identical, but they resemble each other. -This is
modeled by a distribution g that describes the popula-
tion variability. Before any data are generated, the
distribution g is invoked m times, producing values A,
through A,,. These values of A, are independently
generated, but they all come from the same distribution,
g. For each i, Ai is assigned to plant i. That is Level I
of the hierarchical model. It is shown on the left side of
Figure 8.1.

Level 2 of the model says that, conditional on the A,
values, the plants independently produce data. Thus,
for each i, plant i is observed for time ti, and it experi-
ences a random number of initiating events, X*, with X8
having a Poisson(A;1) distribution. This is shown on the
right side of Figure 8.1.

The population-variability distribution g could be a
gamma(s, id) distribution, which has the computational
advantage of being conjugate to the Poisson distribu-
tion. But that is not the only allowed distribution. It
could also be a lognormal(p, d) distribution, or some
other distribution.

The data consist of the observation times, t1 through t,,
which are known and treated as fixed, and the event
counts, xi through x", which are treated as randomly
generated. The unknown parameters consist of A1,
through A,, as well as any unknown parameters of g.
These parameters of g could be aand At, or p and d, or
some other parameters, depending on the assumed form
of g. To emphasize the contrast between the two levels,
the parameters of g, such as r and 6 or ju and od, are
sometimes called hyperparameters.

When the data instead are failures on demand, the
situation is very similar. The population-variability
distribution generates parameters p, one for each plant.
The distribution g might be a beta distribution, or it
might be some nonconjugate distribution, such as
(truncated) lognormal or logistic-normal. The unknown
parameters consist of the parameters of g, and the
parameters p, through p,,. The data consist of the
counts of failures and demands at each plant, (xi, nl)
through (x., n,). Examples 8.1 and 8.2 illustrate the
two types of data.

Level 1: Population variability Level 2: Plant-specific data

A1 Plant 1, A1, t, X- - Poisson(AAt1)

A2 Plant 2,4A, -2 - X - Poisson(A2g,

-t - b A,,, Plant m, A,,, t I- X. - Poisson(At.)

Population-variability distribution, g

Figure 8.1 Hierarchical model for Poisson data.
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Parameter Estimation Using Data From Different Sources

Example 8.1 InitIating events from many plants.

The number of unplanned scrams at power, x, and the number of 1000 critical hours, t, are listed below for one
calendar year (1984) at 66 plants. The data are from Martz et al. (1999).

Plant x t Plant X t Plant x t Plant x t

Arkansas 1 3 6.2500 Farley 2 6 8.3333 Monticello 0 0.8108 San Onofre 2 5 5.2632
Arkansas 2 12 7.6433 Fort Calhoun 1 5.2632 North Anna 1 8 4.7619 San Onofre 3 7 5.0725
Beaver Valley 1 4 6.4516 Gimna 1 6.6667 North Anna 2 4 6.1538 St. Lucie I 6 5.5558
Big Rock Potnt 2 6.8966 Grand Gult 7 2.0896 Oconee 1 3 7.5000 St Lucie 2 9 7.3770
Brunswick2 3 .6549 Haddam Neck 3 6.5217 Oconee2 0 8.7840 Summer 11 5.5556
CaRaway 12 1.5038 Hatch 1 7 5.6452 Oconee 3 4 6.5574 Surry 1 8 5.2980
CalvertCot u 5 7.5758 Hatch2 7 3.1111 OysterCreek 2 1.6948 Suny2 14 7.4468
Cook 1 3 8.1081 Indian Point 2 4 4.7059 Palisades 1 1.5625 Susquehannal 7 6.5421
Cook 2 7 5.3030 Indian Point 3 7 6.9307 Pt. Beach I 0 6.4201 Susquehanna 2 7 2.1472
Cooper StatIon 3 6.0000 Kewaunee 4 7.5472 Pt. Beach 2 0 7.5442 Turkey Point 3 8 7.3394
Crystal River 3 2 8.3333 LaSalle 1 9 6.2937 Prairie Island 1 4 8.3333 Turkey Point 4 9 5.0847
Davis-Besse 4 5.5556 LaSalle 2 11 5.4726 Prairie Island 2 0 7.8440 Vermont YanIL 2 7.1429
Diablo Canyon 1 5 1.0846 Maine Yankee 7 6.6667 Quad Cities 1 3 4.7619 Wash. Nud. 2 23 4.3643
Dresden 2 3 6.5217 McGuire 1 4 8.0606 Quad Cities 2 2 6.8966 Zion 1 6 6.3158
Dresden 3 8 3.8835 McGuire 2 16 6.9869 Robinson 2 0 0.6161 Zion 2 7 6.3063
Duane Arnold 6 S.5934 Millstone 1 0 6.9902 Saiem I 10 Z6738
Farley 1 2 6.8966 Millstone 2 3 8.5714 Saem 2 10 3.3898

Example 8.2 Failure to start of AFW motor-driven segments at many plants.

The number of failures to start on unplanned demands for motor-driven segments of the auxiliary feedwater
(AFW) system are tabulated for 68 plants, for 1987-1995. Here, xis the number of failures and n is the number
of demands. Common-cause failures are excluded. The data are from Poloski et al. (1998, Table E-4).

Plant x n Plant x n Plant x n Plant x n

ArkansasI 0 14 CrystalRiver3 1 16 NorthAnna2 0 18 Seabrook 0 17
Arkansas2 0 9 DiabloCanyonI 0 46 Oconee1 0 18 SequoyahI 0 30
Beaver Valley 1 0 24 Diaba Canyon 2 0 30 Oconee 2 0 18 Sequoyah 2 0 41
BeaverValley2 0 43 FarleyI 0 34 Oconee 3 0 12 SouthTexasI 0 69
Braidwood I 0 13 Farley2 0 54 Palisades 0 13 SouthTexas2 0 87
Braidwood 2 0 24 Fort Calhoun 0 5 Palo Verde I 0 7 St Lucie I 0 35
Byron I 0 11 Ginna 0 28 Palo Verde 2 0 12 St. Lucie 2 0 21
Byron 2 0 26 Harris 0 98 Palo Verde 3 0 9 Summer 0 24
Callaway 0 57 Indian Point 2 1 24 Point Beach I 0 8 Surry I 0 26
CalvertCliftsI 0 12 IndianPoint3 2 32 PointBeach2 0 16 Surry2 0 32
Calvet Cliffs 2 0 15 Kewaunee 0 26 Prairie island 1 0 3 Three Mile Island 1 0 6
CatawbaI 0 41 MaineYankee 0 23 Prairielsland2 0 7 VoguieI 0 103
Catawba 2 0 89 McGuirel 0 45 Robinson 2 1 28 Vogte 2 0 45
Comanche Pk 0 68 McGuire 2 0 44 Salem 0 24 Waterford 3 0 38
Comanche Pk 2 0 14 Millstore 2 1 11 Salem 2 0 32 Wol Creek 0 51
CookI 0 18 Millstone3 0 54 SanOnofre2 0 13 Zion1 0 13
Cook 2 0 36 North Anna I 0 20 San Onofre 3 0 17 Zlon 2 0 8

lid

In Example 8.1, most of the plants experience at least
one initiating event, and the total number of events is
361. Thus, the data set is large, and the methods given
below perform well. Example 8.2, on the other hand, is
a small data set. That is, most of the plants experienced
no failures, and the total number of failures is only 6.
This example wasdeliberately chosen for this handbook
to illustrate problems that can occur with sparse data.

Two methods are given in Sections 8.2 and 8.3 for
analyzing data by means of a hierarchical model. The
results of each analysis include both an estimate of the
population-variability distribution, g, and estimates of
all the plant-specific parameters, .4 or p,
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8.2 The Parametric Empirical
Bayes Method

8.2.1 General Approach

In spite of the name, this is not a truly Bayesian meth-
od. Instead, it is a kind of hybrid, involving a non-
Bayesian step followed by a Bayesian step.

Step 1. Look at the variability in the data from the
plants, and estimate g. That is, based on the
data from all the plants, estimate the parame-
ters of g by maximum likelihood, and obtain
the resulting estimate of the distribution. Call
the estimate g .

Step 2. Now treat i as a prior distribution. Perform
the usual Bayesian update, with the prior
distribution i and data from a single plant,
to get the posterior distribution for the plant-
specific parameter, 1, or p,.

Thus, the method yields both an estimate of the popula-
tion variability and plant-specific estimates at each
plant.

The method as just explained underestimates the
uncertainty in the answers, because it treats § as if it
were equal to the true distribution g. Therefore, the
best implementations of the empirical Bayes method
add a final adjustment to Step 2, which makes the
plant-specific posterior distributions somewhat more
diffuse. This largely accounts for the inaccuracy in
equating i tog.

The name "empirical Bayes" follows from the two
steps. The plant-specific estimates are found in a
Bayesian way, by updating a prior distribution with
plant-specific data. However, the prior is not based on
prior data or on prior belief, but instead is based on the
existing data - the prior is determined empirically.

Step 1 can be carried out in a simple way only if the
distributions have convenient forms. Thus, parametric
empirical Bayes estimation assumes that g is conjugate
to the distribution of the data at any plant. That is,g is
a gamma distribution when the data are initiating
events or other data from a Poisson process, and g is a
beta distribution when the data are failures on demand.
This is a limitation to the method. One reason for
introducing the hierarchical Bayes method, in Section
8.3, is to overcome this limitation.

Some people might object that the method double
counts the data. It uses the data to decide on the prior
distribution, and then it uses the same data again to
update the prior to obtain the plant-specific estimates.
There are two responses to this: (I) The objection is
not important in practice, unless the number of plants in
the study is very small, or if a small number of plants
dominate the data.. If no single plant contributes much
to the estimate of g, then there is very little double
counting that influences the final estimate for that plant.
(2) The hierarchical Bayes method, given in Section
8.3, will avoid this difficulty entirely.

For failures on demand, Martz et al. (1996) give a
tutorial on the empirical Bayes method, illustrated with
nuclear power plant (NPP) data. Siu and Kelly (1998)
also explain the method as part of their tutorial article.
Carlin and Louis (2000) give a full treatment, including
worked-out examples.

8.2.2 MLE Equations for the Gamma-
Poisson Model

Readers who do not need to know the equations can
skip directly to Section 8.2.5.

The gamma-Poisson model is used for initiating events.
The data at plant i consist of a count of events, x*, in
time t,. Conditional on the plant-specific parameter A,,
it is assumed that x, was generated from a Poisson(At)
distribution. However A1, was generated from the distri-
bution g, which is assumed to be gamnma(a, /I). The
equations for the maximum likelihood estimates
(MLEs) of a and flare now given.

The conditional distribution of X, conditional on A, is
Poisson. However, the unconditional distribution of
X, when A might be any value generated by the
population-variability distribution g, is more compli-
cated. It can be shown that the unconditional distribu-
tion equals the distribution conditional on A, averaged
over the possible values of A. In equation form, this is

Pr(X = xzla,) = JPr(X = zJA)g(AafBi)dA.

Substituting the formulas for the Poisson and gamma
distributions, it can be shown that this equals

Pr(X =.xjarfi)
=r(a+x)

n'ir(a)
(8.1)
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As mentioned in Section 6.2.3.5, Equation 6.8, this is
the gamma-Poisson distribution, also often called the
negative binomial distribution. This distribution is not
conditional on A. Therefore, A does not appear in this
expression. Instead, Equation 8.1 gives the probability
of seeing x events in time t at a plant with a randomly
assigned A.

The necessary equations to carry out these steps are the
following. The equation for a, as a function of 1, is

&4- 4,2:izi 8+ti,

V .. - t,Y. + ti) .

ki
(8.3)

To find the MLEs of a and f, write the product of
terms of the form of Expression 8. 1, using values (x,, tJ)
for i from I to m. That product is the joint uncondi-
tional likelihood of the data. Take the logarithm of that
expression and maximize it. There are several ways to
accomplish this.

One approach is to maximize it numerically as a
function of two variables, using some version of New-
ton's method. This is the approach of Siu and Kelly
(1998). The derivatives of the log-likelihood, used in
performing the maximization, are given below, as
stated by Engelhardt (1994). Here In L denotes the
logarithm of the likelihood.

ln7L = 'v [O(a + x,) - yV(a) - In(1 + tj 16)]

InL=--SI + I.

The function pi is the digamma function, 06(u) =
(dldu)lnIJu). It is built into many computer packages.
Becausex, is an integer, the expression involving Scan
be rewritten as

Substitute Equation 8.3 into

X[yv(&+x,)- yr(&)-ln(1+, /+)1=0

and solve that equation numerically for A. Having

obtained the numerical value of f), find & from
Equation 8.3.

Sometimes the equations do not have a solution. If the
plants do not appear to differ much - for example, the
naive plant-specific estimates xl/t1 are all similar - the
maximum likelihood estimate of g may be degenerate,
concentrated at a single point. That says that the plants
appear to have a single common A. Engelhardt (1994)
recommends aborting the estimation process, not trying
to fit a model, if the estimate of 8becomes greater than
Et, during the iterations. The population-variability
distribution g would be gamma(a: /A), with the second
parameter greater than Zt. But simply pooling the data
(and using a Jeffreys prior) would result in a gam-
ma(Ex, + %, Et,) posterior distribution. Thus the
empirical Bayes distribution would produce a between-
plant distribution that is more concentrated (larger
second parameter) than the distribution when the plant
data are pooled. This is not the intent of the hierarchi-
cal model.

8.2.3 MLE Equations for the
Beta-Binomial Model

The beta-binomial model is used for failures on de-
mand. The data at planti consist of a count of failures,
x,, and demands, p,. Conditional on the plant-specific
parameter pi, it is assumed that x, was generated from a
binomial(n,,p) distribution. However, p, was generated
from the distribution g, which is assumed to be beta(a,
/6. The equations for the MLEs of a and 6 are now
given.

The conditional distribution of X, conditional on p, is
binomial. However, the unconditional distribution of
X, when p might be any value generated by the
population-variability distributiong, equals the distribu-
tion conditional onp, averaged over the possible values
of p. That is,

(a + x,) - r(a)= a+j I- (8.2)

A second approach reduces the problem to solving one
equation, as follows. At the maximum of the log-
likelihood, the two derivatives are equal to zero.
Therefore, do the following:

1. Set the two derivatives equal to zero. The solu-
tions, to be found, are & and A .

2. Solve the second equation for &, as a function of

3. Substitute this expression into the first equation.
4. Solve the resulting equation numerically for f.
5. Calculate & from the numerical value of A&.
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Pr(X =xleaf)=f Pr(X =xlp)g(plafl)dp.

Substituting the formulas for the binomial and beta
distributions, and using some standard identities
relating the beta function and the gamma function, it
can be shown that this equals

Pr(X = x)
n! r(a+x)r(fi+n-x) r(or+i6)

x!(n-x)! r(a) r(O) r(a+P+n)

This is called the beta-binomial distribution. If bothx
and n are integers, this can be rewritten without the
gamma function, as follows:

Pr(X = x)

an! H(a+j)tl(fl+j)lfl(a+fiIj)
71 (n- x) .r j.0 J-0 j-0

MLEs of a and fi, using the equations:

a = p6
)= (1 - )6.

The NILE is found by setting the derivatives with
respect to p and 6 to zero. After some manipulation,
the equations can be expressed as

YX{fv(u+ xi) - IV(P)}
p-1

i-l

J.]

pi

(8.4a)

(8.4b)

As just stated, this is valid if x and n are integers. Are
they not always integers? No, they are not, if the data
set only gives an estimate of the number of demands,
which is not necessarily an integer. In that case, the
expression with the gamma function is the only one that
can be used.

The likelihood is the product of terms of one of these
forms, containing values (xi, n,) for i = I to m. To find
the MLE, take the logarithm of the likelihood and
maximize it.

The maximization can be done in a variety of ways.
One approach, following Atwood (1994), does not deal
with a and fi directly. Instead, it reparameterizes,
working with

6= a+/, and
P = d6 .

The intuitive reason for this reparameterization is that
p is the mean of the binomial distribution, and in most
models the mean is one of the easiest things to esti-
mate. The letter 6 was chosen as a mnemonic for
"dispersion:' because the variance of the binomial
distribution is (1 - p)I(d + 1). Thus, 6 is related
directly to the variance. Recall that in Section
6.3.2.2.2, the prior and posterior values of v+ A, which
we are calling 6 here, were interpreted as the prior and
posterior number of demands.

After working with u and 6, and finding the MLEs of
these parameters, we will translate back to find the

Here p is the digamma function, the derivative of Inr,
just as in Section 8.2.2. If x1 and ni are integers for all
i, Equation 8.2 can be used to rewrite Equation 8.4 as

= T_1 1

i= j-0

(8.5a)

and

m n xl II

2:~ ji= XIJ- I )8
i i n i o 6I

(8.5b)

The Equations 8.4 or 85 must be solved for p and 6.
One method, suggested by Atwood (1994) is to begin
with a trial value of 6. Solve Equation 8.4a or 8.5a
numerically for p. This typically needs only a few
iterations. Substitute this value into Equation 8.4b or
8.5b, and solve the resulting equation for 6. Continue
alternating between the two equations until the esti-
mates converge.

The estimates do not always converge. If the plants
have very similar data, the maximum likelihood esti-
mate of g may be concentrated at a single point, degen-
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erate. This would say that the plants all have the same
p. Atwood (1994) recommends aborting the iterations
if the value of 6becomes greater than En,. Allowing 6
to be greater than Enj would produce a population-
variability distribution that is more concentrated than
the distribution corresponding to simply pooling the
data.

3.2.4 Adjustment for Uncertainty in the
Estimate of g

As mentioned above, the method as presented so far
underestimates the uncertainty in the final answers.
because it does not account for the uncertainty in i .
Kass and Steffey (1989) present a correction to the
final estimates, to approximately account for this
uncertainty. The plant-specific posterior means are
unchanged, but the posterior variances are increased
somewhat. Kass and Steffey (1998) state that the
adjustment is very important if there are few data
subsets (plants, in the present discussion) and many
observations (initiating events or demands). Con-
versely, the adjustment is unimportant when there are
many data subsets and few observations. No harm is
done by automatically applying the adjustment in every
case. The formulas are given here.

82.4.1 Equations for the Ganuna-Poisson Case

With the gamma-Poisson distribution, it is computa-
tionally advantageous to reparameterize in terms of pu
= adiand a. Denote the maximum likelihood estima-
tors for the hyperparameters u and a by A and &. It
turns out that these estimators are asymptotically
uncorrelated, causing certain terms in the formulas to
be zero.

The method as given in Section 8.2.2 finds the esti-
mates & and ft. which can be reparameterized

asA=e&/fand &. Thesearetheestimatedparame-
ters of the gamma prior distribution g. The method
then updates the estimated prior by plant-specific data.
The posterior distribution of As is also a gamma distri-
bution, with posterior mean

The Kass-Steffey adjustment increases the variance to

var,,(A,)

I Jvar(,4)+I ~~var(&)
(8.7)

A covariance term would normally also be present, but
this term is zero when the parameterization is in terms
of ii and ar

We now develop the formulas that must be substituted
into Equation 8.7. From Equation 8.6, the derivatives
of Ep.,, are

EP0,(A) _&(,&+ xi ) and
01i (et+ pi )2

XpOg(A 2) Ax(x -Atd)
X(&+x~j~) 2

From the asymptotic theory of maximum likelihood
estimation, the variances are found as follows. The
information matrix, J, is the negative of the matrix of
second derivatives of the log-likelihood:

Y'L dL]

J i: 12 = E__" ddLJ21 J22 d 2L d 2L
p o W o W2V

(8.8)

evaluated at jA and &. The inverse of this matrix is
asymptotically equal to the variance-covariance matrix:

r var() cov(A,&]
[cov(A&) var(&) J

When this is carried out, we have

TA

& M +t,

J12 = J21 = 0

E,(A)= '+x'
er 1',4 + ti

(8.6)

and posterior variance

varp.,,(A,) = XI
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If all the x; values are integers, the difference of or
terms can be rewritten using Equation 8.2, and the
difference of derivatives or' can be written algebra-
ically, avoiding use of a special function.

Because the off-diagonal elements are zero, the inverse
consists of the inverses of the diagonal terms, and it
follows that

var(j1)=1/Jig and

var(r) = II J22 .

From Equation 8.9, the two derivatives of E,>,. (pi ) are

_,_pi) S
di o+n,

idEp" ( pi-) = - n,,u

is (a+nij)2

The variances and covariance are found from inverting
the matrix in Equation 8.8, with i used now instead of
a. The terms can be found as follows. Define

The final step of the empirical Bayes method is to
substitute the expressions just found into the Kass-
Steffey adjustment for the posterior variance, Equa-
tion 8.7. Then approximate the posterior distribution
by a gamma distribution having the original posterior
mean and the adjusted posterior variance. An example
will be given below.

8.2.4.2 Equations for the Beta-Binomial Case

As in Section 8.2.3, we parameterize in terms of p =
4d(a+ Al and 6= I+ I. Denote the maximum likeli-

hood estimators by it and 6 . Although these estima-
tors are asymptotically not exactly uncorrelated, as was
the case for the gamma-Poisson model, they are nearly
uncorrelated. The equations are given by Atwood
(1995).

The method as given in Section 8.2.3 finds the esti-

mates ft and 6, the estimated parameters of the beta
prior distribution g. The method then updates the
estimated prior by plant-specific data. The posterior
distribution of pi is also a beta distribution, with
posterior mean

5,= [v(is)- V(u&6+xi)]

2, 1Z( ui)-(1- + n, - x, )

S, =zZf) <+ n,)].

Then the information matrix is given by

J" = S2(5S + 52)

S22 = ASI + 0x-))2J-SI

J12 = }21 = A SSI - (O - A)SS2-

The variances and covariance follow from standard
formulas for inverting a 2x2 matrix. Define the deter-
minant

D = JIIJ22 - (Q12)" -

Then we have

var() = J22/ /D

var.i ) = J., + D

COvr(y) = J12 / D .
Epe (pi) =Ax +Si+ n,

(8.9)

and posterior variance

varp.(pi) = EP.(p,)[1- EP.(p,)]I(S+ n, + 1) -

The Kass-Steffey adjustment increases the variance to

varp6 (p,)

v - i var(u) + I) var(S) (8.10)

+[y7EV(JpjJcov(AS) -

To complete the Kass-Steffey adjustment, substitute the
above expressions into the equation for the adjusted
variance, Equation 8.10. Then find the beta distribution
having the posterior mean and the adjusted posterior
variance. Use this as the approximate posterior distri-
bution for p,.

8.2.5 Application to Examples

The parametric empirical Bayes method is now illus-
trated with Examples 8.1 and 8.2. First, a chi-squared
test will be performed, to test whether the plants can be
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pooled. In each example, the difference between plants
will be found to be either statistically significant or
very close to statistically significant. Then plant-
specific confidence intervals will be found, each based
only on the data for a single plant. Then the empirical
Bayes method will be used, and the resulting 90%
credible intervals will be shown, based on the plant-
specific posterior distributions, using the Kass-Steffey
adjustment. The plant-specific intervals resulting from
the empirical Bayes analysis will be compared to the
(less sophisticated) plant-specific confidence intervals.

8±25.1 Example 8.1, Initiating Events

To test poolability of the plants in Example 8.1, the
Pearson chi-squared test was performed, as pre-
sented in Section 62.3.1.2. The test statistic XV was
equal to 378.5. Because there were 66 plants, the
value of x)2 should be compared to a chi-squared
distribution with 65 degrees of freedom. The value
of 378.5 is very far out in the tail of the chi-squared
distribution, off the table. Thus, the evidence is
extremely strong, beyond question, that the plants
do not all have the same A.

To show this graphically, 90% confidence intervals
for A were plotted, with each confidence interval
based on the data from a single plant. These are
shown in Figure 8.2. Because thas been written in
terms of 1,000 critical hours, the units of A are events
per thousand critical hours. The order of the plants
is not alphabetical, but instead is by decreasing
estimate of A. Because the example has so many
plants, only the plants with the 10 highest and 10
lowest estimates are individually identified in the
figure.

A 90% confidence interval is plotted at the top of the
plot for the pooled industry data. Of course the
interval is too short to be realistic, because pooling
of the data is completely unjustified in this example.
In fact, the interval is too short even to be visible.
Nevertheless, the overall pooled mean is a useful
reference value for comparison with the individual
plant results. For this reason, a vertical dashed line
is drawn through the pooled mean.

Because the plant-specific estimates differ so great-
ly, the figure uses a logarithmic scale. This means
that some of the point estimates, those with zero
values, cannot be plotted.

Figure 8.3 is based on the empirical Bayes method.
For each plant, the mean and 90% credible interval
are shown, based on the posterior distribution and
the Kass-Steffey adjustment. The mean and 90%
interval for the industry are also plotted, and a
vertical dashed line is drawn through the mean.
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The most striking feature seen by comparing the two
figures is that the empirical Bayes estimates vary
less from each other than do the MILEs. Of course,
if a plant has no events, the lower confidence limit is
zero, and any Bayesian method will give a non-zero
lower limit. Such a difference appears enormous
when plotted on a logarithmic scale. However, the
effect is seen not only at the bottom of Figures 8.2
and 8.3 but also at the top: the largest plant-specific
posterior means are closer to the industry average
than are the corresponding MLEs. Indeed, just as
was seen for Bayes methods in general, the empiri-
cal Bayes method gives posterior means that are
between the MLEs and the industry (i.e., the prior)
mean.

Those who wish to make some detailed compari-
sons can find a few numerical values listed in Tables
8.1 through 8.3.

Table 8.1 Portion of frequentist analysis
results for Example 8.1.

Table 8.2 Portion of empirical Bayes
analysis, without Kass-Steffey
adjustment.

Plant Gamma Posterior mean and
parameters, 90% credible interval

.c ,

Industry 1.39,1211 (0.118,1.15,3.07)

Callaway 13.39,2.715 (2.94,4.93.7.34)
Wash. Nuc. 2 24.39,5.575 (3.03.4.37,5.93)
Salem 1 11.39,3.885 (1.66, 2.93, 4.49)
Diablo Can. 1 6.39,2.296 (1.25,2.78,4.81)
Grand Gulf 8.39,3.301 (1.29,2.54,4.14)

Pt. Beach 2 1.39,8.755 (0.0164,0.159,0.424)
Prairie Isi. 2 1.39,9.055 (0.0158,0.154,0.410)
Oconee 2 1.39.9.995 (0.0143,0.139,0.372)

- Format Is (ower bound, mean, upper bound).

Plant x, t MLE and 90%
confidence Intervall

Industry 361,374.229 (0.883,0.965, 1.05)

Callaway 12,1.5038 (4.60,7.98,12.9)
Wash. Nuc. 2 23,4.3643 (3.60,5.27,7.47)
Diablo Can. 1 5,1.0846 (1.82,4.61,9.69)
Salem 1 10,2.6738 (2.03,3.74,6.34)
Grand Gulf 7,2.0896 (1.57,3.35,6.29)

Pl. Beach 2 0,7.5442 (0.0,0.0,0.397)
Prairie Isi. 2 0,7.8440 (0.0,0.0,0.382)
Oconee 2 0, &7840 (0.0,0.0.0.341)

' Format is (lower bound, MLE, upper bound).

Table 8.3 Portion of empirical Bayes analysis,
with Kass-Steffey adjustment

Plant Gamma Posterior mean and
parameters, 90% credible intervale

Industry 1.39,1.211 (0.118,1.15.3.07)

Callaway 12.13,2.460 (2.86, 4.93.7.47)
Wash. Nuc. 2 23.40,5.348 (3.00,4.37,5.96)
Salem 1 11.03,3.762 (1.65,2.93,4.52)
Diablo Can. 1 6.08,2.185 (1.22,2.78,4.86)
Grand Gulf 815, 3.204 (1.27,2.54,4.16)

Pt. Beach 2 1.33,8.382 (0.0151,0.159,0.431)
Prairie Isl. 2 1.33,8.665 (0.0146,0.154,0.417)
Oconee 2 1.33,9.554 (0.0132,0.139,0.378)

' Format is (lower bound, mean, upper bound).
The order of the plants is not exactly the same in
Figures 8.2 and 8.3. The reason is that estimates
for different plants are pulled toward the industry
mean by different amounts. This can cause some
rearrangement of the ranking of the plants. For
example, Salem 1 and Diablo Canyon 1 appear in
reverse order in the two figures (and in Tables 8.1
and 8.3). The reason is that Diablo Canyon 1 has
about half as much data (5 events in 1,085 hours) as
Salem 1 (10 events in 2,674 hours). Therefore
Diablo Canyon I is pulled more toward the industry
mean.

We notice also, by comparing Tables 8.2 and 8.3,
that the Kass-Steffey adjustment is very small in this
example. The data set Is so large that g can be
estimated quite well. Any error in equating the
estimate to the true distribution is minor, as reflected
in the small effect of the Kass-Steffey adjustment.

An empirical Bayes estimator is sometimes called a
shrinkage estimator, or a shrinker, because the
method pulls all the MLEs in towards the industry
mean. The intuitive justification for such shrinkage is
the recognition that extreme data are produced by a
combination of extreme parameters and luck. Thus, the
plant with the highest observed frequency appears so
extreme because of a combination of large A and some
bad luck. Likewise, the plant with the best perfor-
mance, Oconee 2, which ran for 366 days straight
without a single scram, can attribute its perfect perfor-
mance to a combination of low A and good luck. The
empirical Bayes method tries to remove the effect of
luck when estimating the A values.
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As always when performing a statistical analysis, one
should try to combine statistical calculations with
engineering understanding. It is known that newly
licensed plants sometimes experience more initiating
events than they do after acquiring more experience.
This was mentioned in the discussion of Example 2. 1,
and it is seen again here.

Of the 66 plants, 9 did not have their commercial
starts until 1984 or later. These 9 young plants
are all among the 19 with the highest event fre-
quencies. For example, consider the two plants
with the highest estimated frequencies, based on
the 1984 data. Both of these plants had their
commercial starts in December 1984.

The hierarchical model is intended for plants that are
nominally identical. The variability among the plants
is unexplained, and modeled as random. An important
assumption is that each plant is assigned a A from the
same distribution, g. As a result, each plant is as likely
as any other to have a large A or a small A. The
parameters A, are called exchangeable if any A, is as
likely as any other to correspond to a particular plant.
As discussed by Gelman et al. (1995, Section 5.2),
when we know nothing about the plants, exchangeabili-
ty is a reasonable assumption. When we know the ages
of the plants, however, exchangeability is no longer
reasonable. The most immature plants are expected to
have larger values of A.

Thus, the analysis of Example 8.1 really should be
modified. One way would be to separate the plants into
two groups, mature and immature, and perform an
empirical Bayes analysis on each group. A more
sophisticated way would be to try to model the age of
the plant as a continuous explanatory variable. Then
the otherwise random A, would be multiplied by some
function of the age of plant i, a large factor for imma-
ture plants and a smaller factor for mature plants. Such
models are beyond the scope of this handbook, how-
ever.

8.23.2 Example 8.2, AFW Segment Failures to
Start

This example has 68 plants, with 6 failures in 1993
demands.

Poloski et al. (1998) perform a chi-squared test to
see if p is the same at all plants. This test is ex-
plained in Section 6.3.3.1.2. The test statistic V'
equals 113.1. Because there are 68 plants, the
degrees of freedom is 67. The reported p-value is

0.0004, meaning that 113.1 is the 99.96th percentile
of the chi-squared distribution with 67 degrees of
freedom. However, the data set has so few failures
that the chi-squared distribution is not a good
approximation for the distribution of V. The ex-
pected number of failures at a plant with 30 demands
(a typical number of demands) is 6X30/1993 = 0.09.
This is much less than the recommended minimum
of 0.5. Therefore, the calculated p-value is quite
suspect.

Poloski et al. (1998) chose to model between-plant
differences with a hierarchical model, party because
of the above calculated p-value, and partly on the
grounds that modeling possible differences between
plants is more conservative (reflecting more variabil-
ity) than simply pooling the data.

The empirical Bayes estimate of the population-
variability distribution, g, is a beta (0.137, 36.34)
distribution. The mean of this distribution is
3.77E-3. The 5thand95th percentiles are 5.99E-12
and 2.12E-2. Note, the first parameter of the beta
distribution is very small, well below 0.5. As a result,
the 5th percentile is unrealistically small, implying
less than one failure in one hundred billion demands.
This unrealistic lower bound carries over to the
posterior distribution of all plants that have zero
failures. Figures 8.4 and 8.5 are the analogues of
Figures 8.2 and 8.3.

1.E-04 .E-3

Figure 8.4 Plant-specific
intervals for p.
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Figure 8.5 Plant-specific posterior means and 90%
credible intervals for p.

industry mean. This is seen in both the figures and
the tables. Also, the Kass-Steffey adjustment in-
creases the width of the plant-specific intervals by
a noticeable amount, for example, by about 30%
for Indian Point 3. This is best seen by comparing
Tables 8.5 and 8.6. This comparison shows that
the estimates of the parameters have noticeable
uncertainty, even if the assumption of a beta distri-
bution is accepted.

Table 8.5 Portion of empirical Bayes analysis,
without Kass-Steffey adjustment.

Plant Beta pa- Posterior mean and 90%
rameters, credible interval
a,.e

Industry 0.137.36.34 (6.0E-11, 3.77E-3,2.12E-2)

Indian Point 3 2.137, 68.34 (6.14E-3, 3.12E-2, 7.15E-2)
Millstone 2 1.137,47.34 (1.70E-3. 2.40E-2 6.78E-2)
Crystal River 3 1.137,52.34 {1.53E-3, 2.17E-2, 6.14E-2)
Indian Point 2 1.137,60.34 (1.33E-3,1.88E-2, 5.33E-2)
Robinson 2 1.137,64.34 (1.242-3,1.76E-2 5.01E-2)

Prairie IsL. 1 0.137.39.34 (5.5E-12. 3.48E-3,1.96E-2)

Vogtie 1 0.137. 139.3 (1.6E-12 9.86E-4,5.52E-3)

a. Format Is (lower bound, mean, upper bound).

Table 8.6 Portion of empirical Bayes analysis,
with Kass-Steffey adjustment.

Plant Beta pa- Posterior mean and 90%
rameters. credible interval

Industry 0.137,36.34 (6.02- 11. 3.77E-3,2.12E-2)

Indian Point 3 1.149,35.65 (2.27E-3.3.12E-2 8.77E-2)
Millstone 2 0.596.24.29 (2.26E-4,2.40E-2 8.54E-2)
Crystal R. 3 0.663.29.94 (3.16E-4,2.17E-2 7.44E-2)
Indian Point 2 0.754.39.34 (4.34E-4, 1.882-2.6.172-2)
Robinson 2 0.793, 44.14 (4.78E-4 1.76E-2 5.69E-2)

Prairie Ist. 1 0.133, 37.98 (2.6E-12. 3.48E-3,1.97E-2)

VogUe 1 0.127,128.9 (2.8E- 13.9.862-4. 5.592-3)

Format Is (Wr bound, mean, upper bound).

The first figure shows plant-specific MLEs and 90%
confidence intervals, while the second shows the
results of the empirical Bayes analysis, posterior
means and 90% credible intervals. Only the five
plants that had failures are individually identified in
the figures.

Some numerical details are given in Tables 8.4
through 8.6.

Table 8.4 Portion of frequentist analysis
results for Example 82.

Plant x, d MLE and 90% corf. int

Industry 6.1993 (1.31E-3,3.01E-3,5.93E-3)

Millstone 2 1, 11 (4.65E-3.9.09E-2Z 3.64E-1)
Crystal River 3 1, 16 (3.20E-3,6.25E-2 2.64E-1)
Indian Point 3 2, 32 (1.122-2.6.25E-2.1.84E-1)
Indian Pont 2 1, 24 (2.13E-3.4.17E-2,1.83E-1)
Robinson2 1, 28 (1.83E-3. 3.57E-2,1.59E-1)

Prairie Island 1 0. 3 (0.0, 0.0, 3.32E-1)

Vogtle 1 0,103 (0.0, 0.0.2.87-2)

* Format is (ower bound. VLE, upper bound).

Poloski et at. (1998) carry out the above empirical
Bayes analysis, but they do not report the calcu-
lated lower bounds for plants that experience no
failures. They recognize that those lower bounds
are unrealistically small, and that such calculated
values are an artifact of using a beta distribution.
Therefore, they simply report that the lower bound
is <1 E-8. The next section gives a way to avoid
entirely the assumption of a beta distribution.

Just as with Example 8.1, the empirical Bayes
method pulls the plant-specific MLEs toward the
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8.3 The Hierarchical Bayes
Method

8.3.1 General Approach

In the preceding discussion of parametric empirical
Bayes, the unknown hyperparameters of the popula-
tion-variability (or prior) distribution were estimated by
maximum likelihood. The empirical Bayes estimate of
the population-variability distribution is the corre-
sponding distribution in which these maximum likeli-
hood estimates have been inserted.

The hierarchical Bayes method is entirely different. It
embodies a complete (or full) Bayesian approach to the
problem of estimating the unknown population-vari-
ability distribution based on the available data. The
hierarchical Bayes approach expresses the initial
uncertainty (that is, uncertainty before the data are
considered) about the unknown hyperparameters using
yet another prior, a so-called second-order or hyper-
prior distribution. For example, in Example 8.1, the
population-variability distribution can be a gamma
distribution, with parameters (called hyperparameters
in this context) arand 8i. The distributiong could also
be lognormal with parameters ju and od. Any desired
distribution can be used, with any parameterization.
Figure 8.6 denotes the parameters of g generically as a
and /. The uncertainty in the state-of-knowledge about
the values of a and fis expressed by a suitably speci-
fied joint hyperprior distribution on a and a This
expands Figure 8.1 to be Figure 8.6. We almost always
desire such hyperprior distributions to be diffuse
because we almost never have very precise (or informa-
tive) information at the hyperprior level of such a
model.

Figure 8.6 is drawn showing a and /1 with separate
distributions. In general, the hyperparameters together

have a joint distribution, which does not have to be the
product of independent distributions.

In the full Bayesian model all the unknown parameters,
including prior-distribution hyperparameters, are
assigned prior distributions that express the analyst's
initial uncertainty about these parameters. This is
known as a hierarchical Bayes model. Berger (1985)
and Gelman et al. (1995) discuss the basic notions of
hierarchical Bayes modeling. In Example 8.1, the
parameters of interest to be estimated at the overall
population-variability level of the analysis are aand A,
while the plant-specific parameters to be estimated are
the 66 A, values. Each of these 68 parameters is
assigned an appropriate prior distribution in a hierarchi-
cal Bayes analysis.

The solution to the hierarchical Bayes method requires
conditioning on the data and obtaining the required
posterior distributions of all the parameters of interest.
This is done using Markov chain Monte Carlo (MCMC)
simulation (see Section 8.3.3). The desired point and
interval estimates of the parameters are then directly
(and easily) obtained from these posterior distributions.
This process will be illustrated for Examples 8.1 and
8.2 in Sections 8.3.4 and 8.3.5, respectively.

It is well known (Berger 1985 and Gelman et al. 1995)
that parametric empirical Bayes can be viewed as an
approximation to a full hierarchical Bayes analysis.
However, there are several important advantages of
hierarchical Bayes over parametric empirical Bayes.

First, parametric empirical Bayes essentially requires
the use of a conjugate population-variability distribu-
tion in order to obtain the required unconditional
distribution of X in closed form. Because hierarchical
Bayes analysis is implemented in practice using Monte
Carlo simulation, non-conjugate population-variability

Level 0: Hyperprior Level 1: Population variability Level 2: Plant-specific data

a 1, Plant 1,A1 , t --- XI - Poisson(At)
12 Plant 2, A2, t X2- - Poisson(A20)

------- \. _A, Plant m, A,,,,t, X. - Poisson(At.)

Population-variability distribution,
gAla,a)

Figure 8.6 Hierarchical Bayes model for Poisson data.
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distributions can be used as easily as conjugate distribu-
tions. For the Poisson example, a lognormal(/u, d)
distribution on A is as easy as a gamma(ai, A) distribu-
tion.

Second, when using hierarchical Bayes, there is no need
to worry about double counting of the data. The
hierarchical model and associated Bayesian analysis
ensures that this cannot occur.

Finally, as mentioned above, the hierarchical Bayes
method is conveniently and easily implemented in
practice by means of Markov chain Monte Carlo
simulation using existing software, which is presently
available for free download from the Web (see Section
8.3.3.3).

8.3.2 Directed Graphs

Those who do not need to know the formulas can skim
this section and then jump directly to Section 8.3.4.

The first conceptual step in a hierarchical Bayes analy-
sis should be to construct a directed graph represent-
ing the hierarchical Bayes model. Briefly, such a graph
represents all quantities as nodes in a directed graph, in
which arrows between nodes represent directed influ-
ences. A directed graph for Example 8.1 is shown in
Figure 8.7, where we have defined A = A1 .

Note that a solid arrow indicates a stochastic depend-
ency, while a dashed arrow indicates a logical function.
The hierarchical Bayes approach for the gamma-Pois-
son case proceeds as follows. First specify hyperprior
distributions for the two hyperparameters outside the
"plant i,' box in Figure 8.7. Inference on the
hyperparameters a, land the scram rate vector = (A1,,
A2, ... , A6) requires that we obtain Monte Carlo sam-
ples from the joint posterior g(a, f, A I x), where the
data vector x is defined as x = (x,, x2, ..., x66). The
letter g is used here to denote both prior and posterior
densities. Generate these samples, and then use sum-
mary statistics from these samples to obtain the desired
estimates, such as point and interval estimates of these
parameters.

In order to calculate samples from this joint posterior
we must successively sample from the full conditional
distributions. That is, we must successively sample
from the conditional distribution of each stochastic
node given all the other stochastic nodes in the graph.
However, conditional independence is expeditiously
exploited in directed graphs in order to simplify these
full conditional distributions. For example, given P
and A,, a in Figure 8.7 is conditionally independent
of xi.

8.3.3 Markov Chain Monte Carlo
(MCMC) Simulation

Readers who do not need the programming details can
skip directly to Section 8.3.4.

Markov chain Monte Carlo (MCMC) sampling
techniques give the required samples from the joint
posterior distribution of all the unknown parameters.
The desired hierarchical Bayes point and interval
estimates can thus be directly computed from the
corresponding simulated sample observations without
the need for tedious analytical or numerical calcula-
tions. MCMC is a Monte Carlo integration technique
that is implemented using Markov chains. MCMC
draws these samples by running a cleverly constructed
Markov chain for a long period of time. Good intro-
ductions to MCMC are provided by Gilks et al. (1996)
and Gelman et al. (1995).

In the Poisson example, the required hierarchical Bayes
estimates can be obtained by means of Gibbs sampling,
a basic MCMC technique that is described next. The
equations are sketched here first. Then a publicly
available software package, BUGS, is described. The
package implements the equations without requiring the
users to understand the details.

Figure 8.7 Directed graph for the hierarchical Bayes
analysis of Example 8.1.
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8.3.3.1 Gibbs Sampling

Gibbs sampling is a technique that can be used tc
generate a random sample from the joint posterior
distribution indirectly, provided that we can directIl
sample each of the full conditional distributions (which
are described below).

The Gibbs sampling method, sometimes also called
simply the Gibbs sampler, is briefly described here.
Suppose that we have a set of p parameters 0A, 0_2, ...
qtwhosejoint posterior distribution g(81 , 82, ... , (, Jx)

is unknown but is of interest to be estimated. This is
the usual case when using the hierarchical Bayes
method. In Example 8.1, the Es consist of the two
hyperparameters plus the 66 Ais, and the number of
parameters, p, is 68.

However, suppose that the full conditional distributions
g( 0t I Ox, j * i) i = , 2,. ... , p, are known in the sense
that sample values of 8,, conditional on values of 0,'j i
i, may be generated from these by some appropriate
method. Under mild conditions, these conditional
distributions uniquely determine the required joint
posterior distribution g( 01, 24, ... , 0, I x); hence, they
determine all the unconditional marginal distributions
g( 0 I x), i= l, 2, ... ,p, as well.

The Gibbs sampler generates samples from the required
joint distribution as follows:

(1) Select an arbitrary starting set of values 0,",..., 6P.

Setj=0.

(2) Draw 9Am1 from g( d1 I,...,O, x), then

02' fromg(421 ,V ,..., 3 Ox),andsoon

upto 0M' fromg(OI | ,... t_,, x) to com-

plete one iteration of the sampler.
(3) Increment j and repeat Step (2) untilj+ I = n. After

n such iterations of Step (2), we have obtained the
sample ( A , ... , 9,). Under mild conditions, as n

- - this p-tuple converges in distribution to the
unknown joint posterior distribution g( 0,, .,
80 Ix).

Typical implementation of the Gibbs sampling algo-
rithm generates an initial "large" number of iterations
(called the burn-in) until the samples have converged.
The burn-in samples are discarded, and the samples
generated thereafter are used as sample observations
from the joint posterior distribution g(81, 02 I .. 0, Ix).
Nonparametric density estimators, such as those given

in Section 6.7.3, can then be used to approximate the
posterior distribution using the post bum-in samples.
Examples 8.1 and 8.2 are analyzed in this way in
Sections 8.3.4 and 8.3.5.

In Example 8.1, 68 full conditional distributions are
required in order to use the Gibbs sampler

i(1)
g(a113,A,x) a g(AA)

[ a 1
6 6( 66 )

(2)

g(fI a .A, x) -g(flI drA )

=gzn 66a + 0.0625, 66 + 0.0625)

(3)
g(Al a,/A, x) = gamma(a+x, P+ti,). i =,...,66.

It is easy to sample directly from the gamma distribu-
tions. The first distribution, however, the distribution
for at, is not of a familiar form, and in fact is not
known fully. It is only known to be proportional to the
stated expression, with the normalizing constant
unknown. The Metropolis-Hastings method is
described next, as a way to sample from a distribu-
tion such as the distribution for a.

8.3.3.2 Metropolis-Hastings Step

It is sometimes the case that one or more of the full
conditional distributions g( 0, I x. xj i) i 12, 2,
p, required in Step (2) of the Gibbs sampler may not be
available in closed form. This may happen as follows.
These full conditional distributions are usually obtained
using Bayes' Theorem and, while the two terms (the
likelihood and the prior distribution) in the numerator
of Bayes' Theorem are usually known, the integration
required to obtain the normalizing factor (the denomi-
nator) in Bayes' Theorem cannot be performed in
closed form. That is, the required full conditional
distribution is known only up to a multiplicative con-
stant, the normalizing factor. The corresponding full
conditional distribution is thus unavailable in closed
form, and sample values from this distribution cannot
be directly obtained as required in Step (2) of the Gibbs
sampler.

Denote the full conditional distribution, which is known
only up to a normalizing constant, as g(O; I | x*J * i).
For convenience, we suppress the conditioning terms in
the notation below. In this situation, sample observa-
tions may be obtained in Step (2) of the Gibbs sampler
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by using a so-called Metropolis-Hasthigs step (Has-
tings 1970) as follows:

(1)
(2)

(3)
(4)

Initialize 4° and setj = 0.
Generate an observation 0 from a candidate
distribution q( 4J &p'), where q(ykx) is a probability
density in y with parameter (for example mean) x.
Generate a uniform(0, 1) observation u .
Let

', =ez, if u < a(9/,0)

or* Oil., otherwise
where

aX ) g(y)q(xl y)a(xy) = g(x)q(ylx)

(5) Increment j and go to (2).

Because a uses a ratio, g(y)Ig(x), it can be calculated
even though the normalizing constant for g is unknown.
The candidate distribution in Step (2) can be almost any
distribution (Gilks et al. 1996), although a symmetric
distribution such as a normal distribution results in a
simplification of the algorithm, and is called simply a
Metropolis step (as opposed to a Metropolis-Hastings
step). A common choice for q(yjx) is a normal distri-
bution with mean x and a variance that allows the
random deviates to be a representative sample from the
entire complete conditional distribution. A preliminary
rule of thumb suggested by Gelman et al. (1995, Sec.
11.5) is that the variance be such that the new value,
em, is picked in Step (4) about 30% of the time, and the
old value, &,', is picked about 70% of the time. The
new value should be picked more often in problems
with few parameters and less often in problems with
many parameters.

Actually, BUGS favors a method called adaptive
rejection sampling (Gilks and Wild 1992) instead of
the Metropolis-Hastings algorithm. This method uses
more storage space but fewer iterations. It requires that
the conditional distributions in the Gibbs sampler be
log-concave (George et al. 1993). This requirement is
satisfied for the commonly used prior distributions. If
the user happens to select a prior that leads to a prob-
lem, BUGS will give a diagnostic message.

8.3.3.3 BUGS (ayesian Inference Using Gibbs
Sampling)

Fortunately, for a wide range of common problems,
there is little need to actually program the Gibbs

sampler in practice. Gibbs sampling has been conve-
niently implemented through the BUGS software
project (BUGS 1995, Spiegelhalter et al. 1995, and
Gilks et al. 1994). It is currently available for free
download at WWW URL

http://www.mrc-bsu.cam.ac.uk/bugs/.

The classic BUGS program uses text-based model
description and a command-line interface, and versions
are available for major computing platforms.

A Windows version, WinBUGS, has an optional
graphical user interface (called DoodleBUGS) as well
as on-line monitoring and convergence diagnostics.
BUGS is reasonably easy to use and, along with a user
manual, includes two volumes of examples. Section
8.3.4 illustrates how WinBUGS was used in Example
8.1 to obtain the hierarchical Bayes estimates of the 66
plant-specific scram rates and of the corresponding
population-variability distribution. Section 8.3.5 uses
WinBUGS in Example 8.2, to obtain the hierarchical
Bayes estimates of p at each of the 68 plants and of the
corresponding population-variability distribution.

8.3.4 Application to Example 8.1,
Initiating Events

8.3.4.1 Development of Hyperprior Distributions

It will be necessary at the start to develop hyperprior
distributions. Therefore, this topic is discussed here in
general terms. One must choose hyperpriors that are
diffuse enough to contain the true values of the
hyperparameters. That means that the analyst must
have some vague idea of the true values of the hyper-
parameters. In principle, this should come from experi-
ence with other, similar data sets. Often, however, the
current data set is used to provide guidance on the
plausible hyperparameter values. The diffuseness of the
hyperpriors can be assessed by using the rough rule of
thumb that a quantity can plausibly vary from its mean
by up to two standard deviations.

In the examples below, the plausible values will be
obtained from the previous empirical Bayes analyses.
However, it is possible to develop hyperprior distribu-
tions without such a sophisticated analysis, just by
examining the data carefully. For example, one can
easily get an estimate of the mean of A, and one can
also find an upper bound that A rarely exceeds. Such
considerations can provide rough guidance on plausible
bounds for the hyperparameters a and A. Then one
constructs hyperprior distributions that achieve these
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bounds without going far into the tails of the distribu-
tions. The process is not always easy, but some analy-
sis of this type is necessary.

It might seem tempting to just use distributions with
enormous standard deviations, say mean I and standard
deviation 1,000. In principle this is possible, but in

practice it may challenge the numerical accuracy of the
software. Therefore, it is recommended that the data be
examined and that hyperpriors be constructed that are
diffuse enough to include anything consistent with the
data, but that are not unrealistically diffuse.

8.3.4.2 Example Analysis

Let us now illustrate the hierarchical Bayes method
in Example 8.1. We use the Gibbs sampler in BUGS
to calculate all the required population and plant-
specific scram rate estimates.

To begin, we assume that the population-variability
distribution is gamma(a, I@ just as in Section 8.2.
First the hyperprior distributions must be constructed
for a and A based on the considerations in Section
8.3.4.1. The empirical Bayes analysis of Section
8.2.5.1 gave ar = 1.4 and AG = 1.2. Therefore, we
choose both hyperpriors to have mean 1, agreeing
(to one significant digit) with the empirical Bayes
results. The hyperparameter ais given an exponen-
tial hyperprior distribution with mean and variance of
1, while the hyperparameter lis given an independ-
ent gamma(0.0625, 0.0625) hyperprior distribution.
Thus, H is assumed to have a hyperprior mean and
standard deviation of 1 and 4, respectively. The
hyperpriors are diffuse (large variances), and have
plausible means, so they will probably not bias the
final answers much.

Figure 8.8 contains the WinBUGS model used here
for this Poisson example. The initial values consid-
ered are: alpha = 1, beta = 1, and lambda[i] = 1, i =
1,...,66.

After 1,000 bum-in iterations (to remove the effect of
the initial starting values and to achieve convergence
of the Markov chain), 10,000 additional simulated
posterior sample values of a, A and A = (A, 4, ....
A4J were recorded. These 10,000 sample values
were then used to calculate the required posterior
point and credible interval estimates of a, A and
each 4 For example, the hierarchical Bayes esti-
mated posterior mean of the Callaway scram rate is
calculated to be 4.97 per 1,000 critical hours. The
corresponding 90% credible interval on A, Is (2.87,
7.51].

In addition, the marginal posterior mean and stan-
dard deviation of a are calculated to be 1.38 and

0.30, respectively, whereas those for fare computed
to be 1.21 and 0.32. A hierarchical Bayes 90%
credible interval for a is [0.94, 1.93], while the corre-
sponding interval for His [0.76, 1.78]. The marginal
posterior correlation between a and 8 is also easily
calculated from the 10,000 pairs of corresponding
posterior (a, A values to be 0.89. From Table 8.3
we see that the empirical Bayes point estimates of a
and flare 1.39 and 1.21, respectively, which are in
near perfect agreement with the hierarchical Bayes
estimates.

model
I

for (i in I:M) (
lambda(i] - dgamma(alpha,beta)
mu[i] <- lambdali]*t[i]
xlii - dpois(mu[i])

I
alpha - dexp( 1.0)
beta - dgamma(0.0625, 0.0625)

Figure 8.8 WinBUGS model specification for
Example 8.1.

Figure 8.9 illustrates the hierarchical Bayes results.
For each plant, the posterior mean and 90% credible
interval are shown. The mean and 90% credible
interval for the population-variability distribution are
also shown, and a vertical dashed line is drawn
through the mean. Actually, this population-variabil-
ity distribution is the gamma distribution evaluated
when arand Dare set equal to their posterior means.
It does not reflect the uncertainty in these two hyper-
parameters. Figure 8.9 agrees very closely with
Figure 8.3.

Table 8.7 contains the same portion of the numerical
hierarchical Bayes analysis results for Example 8.1
as are displayed in Table 8.3.

The point and interval estimates in Table 8.7 are all
in good agreement with the empirical Bayes esti-
mates in Table 8.3.

8.3.5 Application to Example 8.2, AFW
Segment Failures to Start

Recall that this example has 68 plants with sparse failure
data consisting of only 6 failures in 1,993 demands.
Because the data are so sparse, the form of the prior, the
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population-variability distribution, can strongly influence
the answers. Therefore, the example is analyzed using two
population-variability distributions, first a beta distribu-
tion, as in Section 8.2, and then a logistic-normal distribu-
tion. In each case, diffuse hyperpriors with plausible
means are used. Therefore, the exact choices made for the
hyperpriors have little influence on the answer.
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8.35.1 Analysis with Beta Prior

We assume thatthe population-variability distribution
is a beta(a, fi distribution. In this case, the empirical
Bayes analysis found a= 0.1 and 6= 36. We will
construct diffuse hyperpriors that contain these
values.

The hyper-parameter a is assigned an exponential
(1) hyperpriordistribution with a hyperprior mean and
standard deviation of 1, while the hyperparameter a
is assigned an independent gamma(l.0, 0.035)
hyperprior distribution. Thus, we assume that P has
a hyperprior mean and standard deviation both equal
to approximately 30. The forms of these hyperprior
distributions ensure that the joint posterior distribu-
tion will be log-concave, and the diffuseness of the
hyperpriors ensures that they will not influence the
final answers greatly.

The chosen hyperpriors include the desired values of
0.1 and 36, and much more. In particular, the expo-
nential distribution for a allows any value below the
mean of 1, because the exponential density de-
creases monotonically. Ukewise, the gamma density
of 8ialso Is monotonically decreasing, and so allows
any value below the mean. As for values larger than
the mean, we apply the rule of thumb that says that
most random variables can easily deviate from the
mean by up to two standard deviations. This says
that acould be as large as 3 and gas large as about
90. Because of the knowledge gained from the
empirical Bayes analysis, we believe that the
hyperpriors are diffuse enough. If the prior belief
about the parameters were more rough, based on a
cruder analysis of the data, we would want to com-
pensate by choosing more diffuse hyperpriors. See
Section 8.3.4.1 for more details.

Fig. 8.10 contains the WinBUGS model used here
for this binomial example. The initial values were:
alpha = 1, beta = 1, and pi = 0.01, i = 1, ..., 68.
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Figure 8.9 Plant-specific posterior means and 90%
credible intervals for A, from hierarchical Bayes
analysis.

Table 87 Portion of hierarchical Bayes anal-
ysis results for Example 8.1.

Plant Posterior mean and 90%
credible intervala

Industry (0.116,1.14, 3.06)

Callaway (2.87,4.97, 7.51)
Wash. Nuc. 2 (3.01, 4.39, 5.99)
Salem 1 (1.65, 2.94,4.57)
Diablo Can. 1 (1.24, 2.83,4.99)
Grand Gulf (1.27, 2.57,4.21)

Pt. Beach 2 (0.013, 0.156, 0.429)
Prairie IsI. 2 (0.012, 0.152, 0.410)
Oconee 2 (0.011, 0.137, 0.374)

model
(
for (i in 1:M) f

x[iJ - dbin(p[i],n[i])
phi] - dbeta(alpha, beta)

alpha - dexp(l.0)
beta - dgamma(l.0,0.035)

Figure 8.10 WinBUGS model specification for a
beta prior In Exarnple 8.2.' Format is (lower bound, mean, upper bound).

The least significant digit may be inaccurate by 2
or more, because of Monte Carlo sampling error.
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After 10,000 bum-in iterations (to remove the effect
of the initial starting values and to achieve conver-
gence of the Markov chain), 90,000 additional
simulated posterior sample values of a, A and p =
(p1 ' p. ..., pb) were recorded. These 90,000 sample
values were then used to calculate the required
posterior point and credible interval estimates of a,
Ai, and each pA

In addition, the marginal posterior mean and stan-
dard deviation of a are calculated to be 0.188 and
0.136, respectively, whereas those for p are com-
puted to be 46.4 and 32.4. A hierarchical Bayes
90% credible interval for a is [0.046, 0.442], while
the corresponding interval for a is [9.95, 109.5].
Note the large uncertainties associated with the
hierarchical 8ayes estimates of a and P because of
the sparseness of the data. Table 8.6 shows that the
empirical Bayes point estimates of grand Care 0.137
and 36.34, respectively, which are well within the
90% credible intervals of the corresponding hierar-
chical Bayes estimates.

Figure 8.11 illustrates the hierarchical Bayes results.
For each plant, the posterior mean and 90% credible
interval are shown. The mean and 90% credible
interval for the population-variability distribution are
also shown, and a vertical dashed line is drawn
through the mean.

Table 8.8 contains the same portion of the numerical
hierarchical Bayes analysis results for Example 8.2
as given in Table 8.6. The results are presented to
only two significant digits, because the Monte Carlo
errors reported by BUGS show that the third signifi-
cant digit is not meaningful.

Table 8.8 Portion of hierarchical Bayes
analysis results using beta prior for
Example 8.2.

Plant Posterior mean and 90%
credible interval A

Industry (1.6E-9, 4.OE-3, 2.1 E-2)

Indian Point 3 (5.5E-2, 3.2E-2, 7.9E-2)
Millstone 2 (1.6E-2, 2.6E-2, 8.3E-2)
Crystal R. 3 (1.5E-2, 2.3E-2, 7.1E-2)
Indian Point 2 (1 .3E-2, 1 .9E-2, 5.9E-2)
Robinson 2 (1.2E-2, 1.8E-2, 5.4E-2)

Prairie IsI. 1 (1.5E-15, 4.1E-3, 2.1E-2)

Vogtie 1 (2.5E-16, 1.2E-3, 6.4E-3)

a Format is (lower bound, mean, upper bound).

The point and interval estimates in Table 8.8 are all
in reasonably close agreement with the empirical
Bayes estimates in Table 8.6.

8.3.5.2 Analysis with Logistic-Normal Prior

One of the primary advantages in using the hierarchical
Bayes method is the ability to consider non-conjugate
population-variability (or prior) distributions. We now
illustrate this for Example 8.2.

The previous analysis considered a conjugate beta prior in
this example. Table 8.8 shows that, for x = 0, the use of
a beta prior produces lower 5% credible limits on the
order of 10" or 10", which are unrealistically small.
This result is a consequence of the fitted L-shaped beta
prior distribution, with high density close to p = 0.

We can avoid such unrealistic results by using a non-
conjugate logistic-normal prior distribution (see Section
6.3.2.5.2 or A.7.9) in the hierarchical Bayes approach.
Recall that, while such a prior is extremely difficult to
consider in an empirical Bayes approach, it is extremely
easy to do in hierarchical Bayes.

Figure 8.12 contains the WinBUGS model specifica-
tion for using a logistic-normal prior in Example 8.2.
Observe that this is no more difficult than using the

I.E-04 I.E-W03 .E-02 I.E-01 1.E+.O
p oG 0ats 4

Figure 8.11 Plant-specific posterior means and 90%
credible intervals for p, from hierarchical Bayes
analysis with beta population-variability distribution.
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hierarchical Bayes model based on a conjugate beta
prior shown in Figure 8.10. Note that BUGS parame-
terizes the normal distribution in termns of r= 1id. A
commonly used prior distribution for ris gamma, and
that choice is used here. Thus, assigning p a prior
precision of 0.0001 is equivalent to assigning it a
prior variance of 10,000, ora prior standard deviation
of 100.

/ .m

a 15

100 \IogMjs40fom

50

0.005 0.01 0.015 0.02

p
Figure 8.13 Fitted population-variabilitydistributions
in Example 8.2.

model
I

for (i in I:M) (
x[i] - dbin(p[i],n[i])
yli] - dnorm(mu,tau)
Pil <- exp(ylil)/(1 + exp(yliD)

I
mu - dnorm(-5,0.0001)
tau - dgamma( 1.7)

}

Figure 8.12 WinBUGS model specification for a
logistic-norrmal prior in Example 8.2.

Again using 10,000 bum-in iterations and 90,000
replications of the Gibbs sampler for the model in
Figure 8.12, WinBUGS likewise calculated posterior
means and 90% credibility intervals for A a, and
each p,

The marginal posterior mean and standard deviation
of p are calculated to be -5.097 and 0.09517, re-
spectively, whereas those for orare computed to be
0.640 and 0.238. A hierarchical Bayes 90%fO credible
interval for p Is [-5.253, -4.939), while the corre-
sponding interval for ois [0.322, 1.08].

Figure 8.13 shows the two estimated population-
variability distributions, when the form is assumed to
be beta (the conjugate distribution) or logistic-normal.
The mean of the beta prior is 0.004 and the mean of
the logistic-nomnal prior is 0.007, nearly twice as
large. Note that, unlike the beta prior, the logistic-
normal prior avoids the high probability density close
top =0.

Figure 8.14 illustrates the hierarchical Bayes results
using the logistic-normal prior. As in Figure 8.11, the
posterior mean and 90%0 credible interval are shown
for each plant. The mean and 90% credible interval
for the population-variability distribution are also
shown, and a vertical dashed line is drawn through
the mean. This plot may be directly compared with
Figure 8.11.

1.E-04 1.E-3 1.E-2 I.E-C1 .E+CO
p OXOO4M4

Figure 8.14 Plant-specific posterior means and 90%
credible intervals for p, from hierarchical Bayes
analysis with logistic-normal population-variability
distribution.

Table 8.9 contains the same portion of the numerical
hierarchical Bayes analysis results for the logistic-
normal as given in Table 8.8 for the beta prior.

Note that the posterior means and 90o% credible
intervals in Table 8.9 are all larger than those in
Table 8.8. As stated above, this is a direct conse-
quence of using the logistic-normal prior in Figure
8.13. Observe also that the lower 90% credibility
limits for plants with no failures, such as Prairie
Island 1 and Vogtle 1, are now much more realistic
than the corresponding limits In Table 8.8.
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Table 8.9 Portion of hierarchical Bayes analy-
sis results using logistic-normal
prior for Example 8.2.

Plant Posterior mean and 90% credi-
ble interval '

industry (2.1E-3, 7.4E-3, 1.7E-2)

Indian Point 3 (6.2E-3, 3.4E-2, 8.7E-2)
Millstone 2 (3.OE-3, 3.1 E-2, 9.7E-2)
Crystal R. 3 (2.8E-3, 2.6E-2, 8.OE-2)
Indian Point 2 (2.5E-3, 2.1 E-2, 6.2E-2)
Robinson 2 (2.4E-3, 1.9E-2, 5.7E-2)

Prairie Ist. 1 (6.6E-4, 1.2E-2, 4.4E-2)

Vogue 1 (4.3E-4, 4.E-3, 1.3E-2)

' Format is (lower bound, mean, upper bound).

8.4 Discussion

This chapter concludes with several important observa-
tions.

8A.1 Hierarchical Bayes Is Still Bayes

The hierarchical Bayes model is a special case of the
familiar Bayesian model. It is not some new kind of
construction. To see this, consider Levels 0 and I
together in Figure 8.6. The prior parameter is a vector
9, consisting of the hyperparameters and the 2,s. Thus,
the prior 9 is a vector with dimension 2+ m. The prior
distribution on 0 is specified: the joint distribution of
the hyperparameters aand his given by the hyperprior
in Level 0, and the conditional distributions of the His
are independent, and specified by g, conditional on a
and al. Thus, Levels 0 and I together specify the prior
parameter vector and its prior distribution. The poste-
rior distribution is therefore given by Bayes' Theorem:

gpm(1 I data) - Pr(data I 1) x g,,,(o) .

This differs from the applications of Bayes' Theorem
elsewhere in this handbook in only two ways: the
parameter is a high-dimensional vector, and the prior
distribution has a lot of structure, as shown in Fig-
ure 8.6.

A practical consequence of the high dimension of 9 is
that the tools of Chapter 6, numerical integration and
simple random sampling methods, do not work well.
More recently developed methods, versions of Markov

chain Monte Carlo sampling, must be used. Conceptu-
ally, however, hierarchical Bayes modeling fits per-
fectly within the framework of Bayes' Theorem. In
particular, everything is legal, with no double counting
of data.

8.4.2 The "Two-Stage" Bayesian
Method

Kaplan (1983) introduced a "two-stage" Bayesian
method, which has sometimes been used in PRA work.
It is described here in terms of Figure 8.6. The method
singles out the plant of special interest, say Plant l. It
then estimates the hyperparameters, a and Ad, in a
Bayesian way, using the data from all the plants except
Plant 1. It then uses the estimated g(A I ar, A as a prior,
combining it with the data from Plant 1 to estimate Al,
in the usual Bayesian way.

The originally intended reason for not using Plant I in
the first stage was to avoid double counting. As men-
tioned in Section 8.4. 1, the hierarchical Bayes method
is based directly on Bayes' Theorem, and therefore
does not involve double counting. Therefore, the two-
stage Bayesian method should no longer be used, but
should be replaced by the conceptually cleaner hierar-
chical Bayes method. Now that numerical algorithms
have been developed to sample from the posterior
distributions, this is completely feasible.

8.4.3 Lower Bounds on Parameters

Example 8.2 illustrated that different population-
variability distributions (prior distributions) can lead to
radically different lower percentiles of the parameters'
posterior distributions. This occurred in that example
for those plants that had experienced no failures. A
beta prior led to 5th percentiles for p on the order of
IE- 15, whereas a logistic-normal prior led to 5th
percentiles on the order of 5E-4. No one believes the
first answers, but many people could believe the second
answers. Does that mean that the answers from the
logistic-normal prior are "right"?

In fact, the lower bounds are an artifact of the model, in
both cases. The plants that experienced no failures
reveal only that p is "small at those plants. They do
not give information about how small p might be. If
many plants have no failures, as in Example 8.2, then
we have very little information about the lower end of
the population-variability distribution. In contrast to
this, the plants that experienced one or more failures
convey much more information, revealing both how
large and how small p could plausibly be at those

i
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plants. Therefore, the 95th percentile of p at any plant
is somewhat dependent on the assumed form of the
population-variability distribution (beta, logistic-
normal, or whatever). But when many plants have no
observed failures, the 5th percentile of p at any of those
plants is extremely dependent on this assumed form.

And why was a particular form assumed for the popula-
tion-variability distribution? For convenience only!
Thus, even if the answers from a logistic-normal prior
look credible, we do not "know" that they are correct.
We may choose to discard the results from using a beta
prior, because we do not want to publish 5th percentiles
that could be ridiculed. We might also choose to
publish the results from using a logistic-normal prior,
knowing that the 5th percentiles appear credible. But it
is a delusion to think that we "know" lower bounds on
p at the plants with no observed failures. The calcu-
lated lower bounds remain an artifact of the assumed
model.

Fortunately, lower bounds are not a concern for risk.
Means and upper bounds are the important quantities,
and they can be estimated with much less dependence
on the model.

8.4A Empirical Bayes as an
Approximation to Hierarchical
Bayes

As remarked elsewhere, Figures 8.3 and 8.9 are very
similar to each other, and Figures 8.5 and 8.11 are
similar to each other. That is, in both Examples 8.1 and
8.2, the empirical Bayes results are numerically close to
the hierarchical Bayes results, when (a) the empirical
Bayes method includes the Kass-Steffey adjustment,
and (b) both methods use the conjugate population-
variability distribution, a gamma distribution for
Poisson data and a beta distribution for binomial data.
This agreement between the methods is more than
coincidence. Kass and Steffey (1989) developed their
method specifically with this intent: to make the
empirical Bayes approach give a first-order approxima-
tion to the hierarchical Bayes approach with a diffuse
hyperprior. The method does this well in the two
examples. Of course, when the hierarchical Bayes
method does not use a conjugate population-variability
distribution, as in Section 8.3.5.2, there is no corre-
sponding empirical Bayes method.
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